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A Machine Learning application to signal financial risk during setback

periods

Abstract

The aim of this research is to offer empirical evidence on the usage of eigenvalues and eigenvectors as risk

signal able to capture exogenous changes in financial markets’ sentiment. Starting from the covariance matrix

of asset returns and their minimum spanning tree topological representation, we compare the 2008 Global

Financial Crisis with the 2020 financial setback triggered by the COVID-19 health crisis. We show that a

hierarchical clustering algorithm on them is capable to successfully separate calm periods from volatile ones.

Moreover, we show that improved performances are linked to filtering a momentum investment strategy with

the probability of being in a volatile market resulting from a linear logistic model on the metrics. Finally, we

validate our findings using out-of-sample (ten synthetic) datasets generated using a Variational Auto-Encoder

neural network. We contribute to the literature by showcasing the prominent forward-looking view offered by

eigenvalues-eigenvectors compared to traditional volatility measures. Our findings are important to investors,

risk managers and regulators in timely signaling risk changes and creating profitable investment strategies.

JEL classification: G01, G11

Keywords: clustering, COVID-19, minimum spanning tree, eigenvalues, momentum, variational autoencoder
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1 Introduction

In 2020, the COVID-19 health crisis triggered a sudden shift in lives influencing the global economy and financial

markets (Ding et al. 2020). Unexpectedly emerged, COVID-19 resulted in complete social isolation, causing a

variety of adverse economic effects. The health crisis significantly influenced both the global economy and financial

markets more than the Global Financial Crisis (GFC) in 2008. Moreover, financial markets are often characterized

by less pronounced, yet more frequent exogenous events – such as Brexit (Belke et al. 2018, Hohlmeier & Fahrholz

2018), US-China trade war (Xu & Lien 2020), European debt crisis (Kousenidis et al. 2013), China Real Estate

bubble (Glaeser et al. 2017, Jiang et al. 2021) – which represent a capital management challenge to both portfolio

managers and risk managers. Thus, in this paper we ask the following question: how efficiently eigenvalues and

eigenvectors capture systematic risk during periods of financial setbacks?

Extensive research has documented that traditional risk measures - such as those based on volatility - are

mainly reflective of past markets’ behavior rather than being forward-looking (Duan & Zhang 2014). Eigenval-

ues and eigenvectors, on the other hand, being the output of multidimensional covariance matrices, consistently

embed future investors’ views and their sentiments. As such, their application to financial problems can support

practitioners to timely react to exogenous systematic shocks. The aim of this research is to offer an empirical

evidence on the usage of eigenvalues and eigenvectors as risk signal able to capture exogenous changes in financial

market conditions implied in covariance matrices of sentiment assets 1 returns. In fact, eigenvalues-eigenvectors

are geometrically seen as the factor by which a matrix changes when it is stretched or sheered (Avellaneda &

Lee 2010). Since covariance matrices and volatilities are used to measure financial risk (Andersen et al. 2013),

in financial applications the set of eigenvalues-eigenvectors represent the factor by which financial risk changes in

response to asset returns movements - an empirically observed behavior of the financial market during economic

uncertainties. However, we must point out that the aim is not to predict exogenous events, rather to offer a risk

signal that allows to quickly react to changes in systematic risk. From our empirical analysis, eigenvectors emerge

as a useful tool that can benefit both portfolio managers (via effective portfolio rebalancing) and risk managers

(via improved Value at Risk methodologies (Gençay et al. 2003). Thus, we showcase how the use of eigenvalues

and eigenvectors incorporates better predicted risk factors for systematic risk compared to traditional risk models.

The findings are useful to practitioners to incorporate in their daily financial management. In the forecasting

literature there is an already established link between covariance matrices and eigenvalues (Papailias & Thomakos

2017). However, in the finance literature there is not enough evidence that covariance matrices perform efficiently

during periods of market distress. Thus, to address the above gap in the finance literature, we include the graph

1we define them as widely exchanged assets that can be used as a proxy for describing the ongoing investors’ beliefs in a specific
market, such as S&P500, US treasury yields, gold, etc.

2



theory equivalent of the covariance matrices to enhance the applicability of the proposed signal, especially during

an uncertain market condition. In fact, we convert the covariance matrices into adjacency matrices to topologically

arrange the assets into Minimum Spanning Trees (MST). We show that the eigenvector centrality of the MST is

nothing else than the eigenvector of the adjacency matrix. In fact, Simon (1991) argued that complex systems,

such as financial markets, can be arranged in a natural hierarchy comprising nested substructures. Furthermore, in

the graph theory literature, systemic risk shocks are referred to as abrupt changes in the density of cross-security

connectivity (Billio et al. 2012), which is proxied by centrality measures such as eigenvector centrality.

To do so, in this study we use a time-series data of hourly, open, future prices of sentiment assets derived from

Bloomberg during January 2008 to September 2021. Given the dataset of hourly asset returns, we first analyze

the behavior of covariance matrices, minimum spanning trees and their associated sets of eigenvalues-eigenvectors

during the two most recent financial setbacks, namely the 2008 GFC and the financial setback triggered by the

2020 COVID-19 health crisis. Supported by this empirical evidence, we draw attention to four metrics: the

variance explained by the largest eigenvalue, the difference of variance explained by the largest and the five largest

eigenvalues, the mean eigenvector centrality of the MST and its standard deviation.

We empirically validate the choice of the metrics with a two-fold framework. First, we apply hierarchical

clustering – an unsupervised machine learning algorithm (Raffinot 2017) - on the four metrics showcasing their

ability to neatly separate the observations recorded during periods of financial crisis from those occurred in non-

crisis periods. Second, we filter a momentum investment strategy with the probability returned by a linear logistic

model on the four metrics. Finally, we run an out-of-sample validation by generating ten synthetic datasets using a

Variational Auto-Encoder (VAE) (Kingma & Welling 2013), a neural network algorithm having an output layer of

the same dimensionality as the input one and whose objective is to reconstruct the distribution of the input data.

Since the number of units in the hidden layer is typically fewer than those in the input layer, the reconstruction of

the input data is inherently lossy, hence the output data is different from the sample data, yet sharing the same

underlying distribution. The results - as measured by the Dunn index - point to the four metrics being able to

separate high volatility periods from calm ones by means of the hierarchical clustering algorithm. This result is

consistent across the ten out-of-sample synthetic datasets. Moreover, the filtered momentum investment strategy

exhibits superior Sharpe ratios across all the sub-samples. As such, we contribute to the literature by showcasing

the more prominent forward-looking view offered by eigenvalues-eigenvectors compared to traditional volatility

measures.

The rest of the paper is organized as follows. Section 2 introduces the dataset used in this study. Section 3

draws the four eigenvalue-eigenvector based metrics from the empirical evidence offered by an analysis of the GFC
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and COVID-19 crises. Section 4 describes the methodologies used in the validation framework. Section 5 illustrates

the validation and out-of-sample results. Section 6 concludes and addresses future research.

2 Data

We use a time-series dataset of hourly, open, future prices of sentiment assets sourced from Bloomberg for the

period January 2008 to September 2021. The assets are selected based on generally regarded empirical evidence

referred to the overall market psychology affecting the demand and supply implied in investors’ views (Verma &

Soydemir 2009).

Table 1 lists the sentiment assets used in this study and the Ticker codes.

Table 1: List of the sentiment assets composing the datasets

Name Ticker code
S&P500 ES
US treasury rate 2y TU
US treasury rate 10y TY
Gold GC
EUR / USD EURUSD
WTI CL
Source: Bloomberg

We calculate the matrix of linear returns as:

rt =
rt
rt−1

− 1 ∀t = 1, ..., T.

Successively, we estimate the realized covariance matrix through non-parametric realized covariances RCt.

(Shephard & Barndorff-Nielsen 2004) show that RCt converges in probability to the quadratic variation of the

price process. Thus, we calculate weekly realized covariances, RCt, as the aggregation of cross-products of hourly

returns, such that:

RCt=

Nt∑
τ=1

rτr
′

τ (1)

where Nt is the number of daily observations in the t-week, for t= 1, . . . , T and rτ is the n× 1 vector of asset

returns for the τ -th observation. This ensures positive definite realized covariance matrices and makes volatility

fully observable and mouldable with any time series model.

Next, as base of the graph theory application, we build the adjacency matrix to represent the links between

assets in the tree. Each entry indicates whether pairs of assets are adjacent. However, since clustering (which will
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be applied in the first step of the validation process) requires a distance measure that satisfies the three axioms

of a Euclidean metric, before forming the adjacency matrix we shall transform the covariances into metrics. As

described in (Kayo & Kimura 2011), we first transform the covariances in correlations as ρi,j = σi,jσjσi, ∀ i, j

and then we apply the following transformation:

di,j = 1− ρi,j2.

Moreover, the diagonal of the adjacency matrix is set equal to zero to avoid self-loops 2. A non-zero entry in

the adjacency matrix indicates the existence of a financial relation between pairs of assets wherein the strength of

the link is measured by di,j . On the adjacency matrix, we estimate the minimum spanning tree (MST) 3 with the

algorithm by (Kruskal 1956) 4.

The MST representation allows to quantify the influence structure among the assets by means of a centrality

measure. As such, peripheral nodes that have limited impact on the dynamics of the network have lower centrality,

while higher centrality nodes play a major role. A centrality measure is a function that assigns a non-negative

value to each node such that the higher the value, the more the node is central. In our methodology, we use

the eigenvector centrality measure, according to which an asset displays a high centrality either by direct links to

other assets or by being connected to other securities that are themselves highly central. In fact, the eigenvector

centrality ζ of each node x is given by the weighted average of the centrality values of its neighbours:

ζ (x) :=
1

λ

∑
(x,xT )

W
(
x, xT

)
ζ(xT )

where λ is a constant. In terms of the squared adjacency matrix A, we can re-write the eigenvector centrality

as:

ζ (x) :=
1

λ

∑
j

Aijζ(xj)

where j ∈ N represents the neighbour nodes and in matrix form yields to:

λζ = Aζ

2a self-loop is a link that connects a vertex to itself. We eliminate self-loops since we deem self-relations as insignificant for the
purpose of this study

3For a general introduction to graph theory, see (Bollobás 1998, Bollobás & Béla 2001).
4Starting from having a tree in each vertex, the Kruskal’s algorithm then iterates throughout a process wherein any link with a

minimum weight between the vertices is removed and if the removed link connects two different trees, then these are combined into a
single tree.
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from which it is immediate to see that ζ is the eigenvector of the adjacency matrix A and λ its eigenvalue.

The solution is not uniquely determined since every pair of (λ, ζ) solves the equation. Nevertheless, for con-

nected graphs, the Perron-Frobenius theorem (see AS 1998, Chapter 8, Theorem 5) ensures that the eigenvector

corresponding to the maximal eigenvalue contains all positive components. Hence, ζ is defined as the normalized

dominant eigenvector of A.

3 Parallels between COVID-19 and GFC: a case study

In this section, we use a sub-sample of the entire dataset consisting of two non-continous 52 weeks of observations

concerning the October 2008 Global Financial Crisis and the 2020 financial setback triggered by the COVID-19

health crisis. For both periods, the start date is set at eight weeks before the day that the S&P500 recorded the

minimum value during the crisis period, while the end date is fifty-two weeks after the start date. As a result, the

two datasets span the periods first week of August 2008 - July 2009 and third week of January 2020 - January

2021 respectively.

Table 2 lists the descriptive statistics of the linear returns in the two sub-samples.

Table 2: Descriptive statistics of the returns in the two sub-samples

First week of August 2008 - July 2009
Name Mean St. Dev. Median Skewness Kurtosis

S&P500 10.28% 18% 25.22% 0.18 2.19
US Treasury 10y 0.02% 0.03% 0.07% 0.54 3.75
US Treasury 2y 0.01% 0% 0.01% -2.11 12.44
Gold 0.14% 0.13% 0.17% 0.62 2.27
WTI 0.15% -0.04% 0.46% 0.45 1.24
EURUSD 0.07% 0% 0.1% 0.52 0.81

Third week of January 2020 - January 2021
Name Mean St. Dev. Median Skewness Kurtosis
S&P500 8% 15.9% 13.1% -0.83 1.08
US treasury 2y 0.2% 0.0% 1.3% 6.28 7.66
US treasury 10y 0.05% 0.0% 1.9% 11.74
Gold 6.1% 2.6% 5.2% 0.04 0.66
Crude oil -0.4% -0.1% 36.8% -9.87 15.92
EUR / USD 0.0% 0.0% 0.1% 0.57 0.5

Source: Bloomberg

Having calculated realized covariances and eigenvector centralities, we extract four metrics, namely: the variance

explained by the largest eigenvalue and the difference of variance explained by the largest and the five largest

eigenvalues from the realized covariance matrix as well as the mean eigenvector centrality and the standard deviation

of the eigenvector centrality from the MST.
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The variance explained by the largest eigenvalue is calculated as:

λ1
n∑
j=1

λj

(2)

where λ1 is the largest of the n eigenvalues associated with the realized covariance matrix. Accordingly, the

variance explained by the first five eigenvalues is calculated as:

5∑
j=1

λj

n∑
j=1

λj

(3)

where
5∑
j=1

λj represents the sum of the first five eigenvalues and the difference in variance explained is obtained

by simply subtracting (2) from (3). The mean and standard deviation of the eigenvector centrality as simply

obtained as the arithmetic average and the sample standard deviation respectively.

Having obtained the four eigenvalue-eigenvector metrics from the realized covariance matrices and the minimum

spanning trees, we now showcase their behavior to support their choice as risk signals. To do so, using the two

sub-samples reflecting both volatile market observations and calm ones, we highlight a similar behavior during the

2008 GCF and the 2020 financial setback. In particular, figures 1 to 4 allow a comparison of the distribution

density functions of the four metrics. The read shaded area in the densities marks the difference in distribution

between calm weeks and volatile weeks, where we defined the volatile ones as the four weeks before and after the

S&P 500 recording its lowest value in both sub-samples. To improve comparability, we horizontally stack the 2008

and 2020 datasets.

Figure 1
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Figure 2

Figure 3
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Figure 4

Starting from the variance explained by the largest eigenvalue and the difference of variance explained by the

largest five eigenvalues and the largest eigenvalue, the density functions exhibit a similar jump in mean during

the volatile weeks. Moreover, there is higher density in both tails of the distributions. As highlighted by Laloux

et al. (1999), the largest eigenvalues of a covariance matrix reflect more systematic sources of risk. Potters et al.

(2005) link the largest eigenvalues with systematic risk and the next three to four largest eigenvalues to industry

momentum. The structural change in the shape of the distributions allows us to conclude that systematic risk

becomes more predominant during highly volatile weeks. From a Capital Asset Pricing Model (Fama & French

2004) perspective, assets become more correlated within each other, resulting in a higher portion of variance

being explained by movements of the market portfolio. From an investment strategy perspective, this implies that

rebalancing the degree of correlation with the market portfolio during high volatile weeks is likely to shield from

market downturns proxied by changes in the relative amount of variance explained by the largest eigenvalues. In

fact, Haugen et al. (1991) reports a negative correlation between asset returns and volatility levels in equity and

fixed income markets. From a risk management perspective, instead, this result suggests that risk measures such

as Value at Risk should incorporate higher tail-risk when structural changes in covariance matrices are detected.

In terms of eigenvector centrality mean and standard deviation, their distributions also jump higher in mean and

kurtosis during volatile weeks. Once again, this is due to the systematic source of risk explaining a larger portion

of asset movements. In fact, we have shown how the eigenvector centrality is nothing else than the eigenvector

of the adjacency matrix, which, in turn, is built out of covariance matrices. Figures 5 allows a direct comparison

of the minimum spanning tree generated in August 2008 during the 2008 GFC, the one generated in March 2020

during the financial setback triggered by COVID-19 and the one generated in a calm trading week (first week of
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August 2021). The size of the vertices represent each asset’s eigenvector centrality, wherein each node represents

a single asset. As it is visible, the MSTs at the onset of the two volatile periods present a similar denser structure

where the connections between the assets is stronger. The interconnectivity among securities, together with the

eigenvalues of the covariance matrix on which the adjacency matrix is built, bounced higher as a consequence of

increased market risk. During the calm period, instead, the structure of the tree appears stretched on four major

sections, with the core of the tree placed at the top. As such, we conclude that financial markets exhibit higher

concentration during markets’ crises as fewer concentrated assets in the centre of the graph are capable to explain

a larger portion of the comovements and result in higher eigenvector centralities.

Figure 5: The MST representation during two volatile weeks - August 2008 (left) and March 2020 (centre) - and
a calm week - August 2021 (right)

4 Validation methodology

In this section we describe the methodologies used for the two-fold validation framework.

4.1 Clustering

Clustering analysis is an unsupervised learning technique aimed at grouping a collection of objects into subsets

such that the objects within each cluster are more closely related than to objects assigned to different clusters. As

such, clusters are formed upon a degree of similarity often proxied by a distance measure. In this work, we employe

the agglomerative hierarchical clustering via the AGNES algorithm described in (Kaufman & Rousseeuw 1990) as

it allows us to find groupings with well-defined hierarchies within relationships.

This clustering algorithm starts with assuming that each object belongs to a different cluster, to then merge
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at each of the N − 1 steps the two least dissimilar clusters in a single cluster by minimizing the inter-cluster

dissimilarity. We consider the metrics xt,j for t = 1, . . . , T and j = 1, . . . , N extracted from the realized

correlation matrixes as the base for measuring intra-cluster dissimilarities. We define the pairwise dissimilarities

by means of the Manhattan function in which the distance between two points is the sum of the absolute differences

of their Cartesian coordinates. As at each of the N − 1 steps one cluster is dropped and merged into a different

one, we need to introduce a second measure of dissimilarity between-clusters, which is computed from the set of

pairwise dissimilarities by means of a linkage function. We employed the Ward linkage function (Ward Jr 1963)

which analyses the variance of the clusters via the sum of square distances from the centroids instead of measuring

the distance directly.

The process of merging objects into clusters can be represented by a dendogram, a rooted binary tree where

the nodes represent clusters, the root node represents the whole dataset and the terminal nodes represent each

individual object. Each non-terminal node has two daughter nodes, which represent the two objects that are

merged into the same cluster in the case of the agglomerative approach. The final step is to cut the dendogram at

a particular height to partition the objects into a pre-defined number of clusters.

4.2 Momentum investment strategy

As second validation tool, we consider a daily momentum investment strategy on the SPY, a tradable ETF on the

S&P500. We assume the SPY follows an Ornstein-Uhlenbeck process 5 of the form:

dyt = κ (θt − yt−1) dt+ σtdWt

where yt is the asset return at week t, θt is the long-term mean, σt is the volatility, Wt is a Brownian motion and

κ is a scalar parameter governing the speed of the reversion towards the mean θt. As such, the return generating

process converges towards the long-term mean parameter θ over time.

We use the following Euler discretization for numerical implementation:

ŷt = κ
(
θ̂t − yt−1

)
∆t+ σ̂t

√
∆t Z, Z ∼ N(0, 1).

We use the sample standard deviation of the returns on a rolling window of the last twenty weeks as σt estimate.

θt is estimated via the moving average of the last fifty returns. Given a real value for the mean-reversion parameter

κ, a Monte Carlo simulation sampling from the standard normal distribution estimates yt. The confidence interval

5See (Finch 2004)
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for the point estimate is given by:

CI (yt)α ≈ ŷt ± Z1−α/2
σ̂t√
T

where T is the number of time observations and α is arbitrarily set equal to 0.02. Finally, to find the optimal

mean-reversion parameter κ, we employ a grid-search algorithm to find the parameter that minimizes the Mean

Squared Error (MSE):

MSE =
1

T

T∑
t=1

(ŷt − yt)2.

We found the optimal κ being equal to 0.85. The momentum investment strategy is defined as follows:


buy yt and sell yt+1 if yt−1 ≥ ŷt + Z1−α/2

σ̂t√
T

sell yt and buy yt+1 if yt−1 ≤ ŷt − Z1−α/2
σ̂t√
T

We introduce a filtered momentum strategy based on the four eigenvalues-eigenvectors based metrics by intro-

ducing the following linear logistic model:

ωt = β0,t +

4∑
j=1

βj,txj,t + ut

where xj,t,∀t ∈ T = 1, ..., n and ∀j = 1, ..., 4 are the four metrics, β0,t and βj,t are the coefficients of the logistic

regression and ut ∼ N(0, 1). The logistic model outputs a probability ωt ∈ [0, 1] capable to signal a structural

change in the realized covariances or in the adjacency matrix. In the logistic model, to deal with multicollinearity,

in each period we apply a stepwise variable selection methodology (Hocking 1976).

To filter the strategy with the four metrics, we scale the mean reversion parameter κ as follows:

κt = κ0 [1 + ε · I (ω > 0.5)]

where I(ht = 1) is an index function which assumes a value equal to 1 when the probability ωt resulting

from the logistic model is higher than 0.5. In this case, the mean reversion scaling parameter ε is triggered. The

optimal ε, obtained via grid search, is set at 1.2. One must notice that the mean reversion parameter, κt , becomes

time-dependent in the filtered strategy.

4.3 Variational Autoencoder

In financial applications, analyzing the out-of-sample performance allows avoiding in-sample overfitting. For this

reason, to validate out-of-sample the usage of the four metrics, we generate ten synthetic datasets via a Variational
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Autoencoder (VAE) (Kingma & Welling 2013).

Consider a dataset X =
{
X(i)

}n
i=1

composed of n i.i.d. samples coming from a random variable x. Let’s

assume that the data is generated by a random process involving an unobserved continuous random variable z.

The process consists of first generating a value z from some prior distribution pθ(z) to then generate a value xi

from the conditional distribution pθ(x|z). Let’s assume that the probability density functions (PDFs) of pθ (z) and

pθ(x|z) are differentiable almost everywhere with respect to (z, θ). However, the true parameters θ and the values

of the latent variable z are unknown. The objective is to find an efficient neural network approximation for the

latent variable z as this would allow to mimic the hidden random process and generate a synthetic dataset that

resembles the real data. To do so, we employ a Variational Autoencoder. Assume the prior over the latent variables

to be a centred isotropic multivariate Gaussian pθ (z) = N(z, 0, I). Let pθ(x|z) be a multivariate Gaussian with θ

estimated via a fully connected neural network with a single hidden layer. The true posterior is intractable but

assuming that is approximated by a Gaussian distribution with an approximately diagonal covariance, then the

variational approximate posterior is a multivariate Gaussian with a diagonal covariance structure:

logqθ(z|xi))logN(z, µi, σiI)

where qθ(z|xi) is based on an alternative technique for sampling z such as Monte Carlo and (µi, σi) are the

mean and standard deviation of the approximate posterior which are outputted by the neural network as nonlinear

functions of xi and the variational parameters φ.

Afterwards, one simply needs to sample from the posterior zi,l ∼ qθ(z|xi) with zi,l = gθ
(
xi, εl

)
= µi + σiεl,

where εl ∼ N(0, I). It can be proven that the Kullback-Leibler divergence can be computed without estimation

and the resulting estimator for the datapoint xi is given by:

L
(
θ, φ, xi

) ∼= 1

2

J∑
j=1

(
1 + log

((
σ
(i)
j

)2)
−
(
µ
(i)
j

)2
−
(
σ
(i)
j

)2 )
+

1

L

L∑
l=1

logpθ
(
xi
∣∣ zi,l)

where logpθ
(
xi
∣∣ zi,l) is a Gaussian fully connected neural network decoding term.

5 Validation results

5.1 Clustering

Since clustering techniques are scale sensitive due to the reliance on distance functions, we first normalize the time

series of the four metrics extracted from the covariance matrices and the MST. Afterwards, we assess the clustering
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tendency of the data by calculating the Hopkins’ statistic on the spatial randomness of data, which compares the

distances between a sample of data points and their nearest neighbours to the distances from a sample of pseudo

points and their nearest neighbours. Under the null hypothesis that the data is un-clusterable, the test statistic

follows a beta distribution with both parameters equal to the number of points selected to sample the observations.

The closer the Hopkins’ statistics is to 1 and far above 0.5, the more the object have higher tendency to cluster.

Our test shows a value of 0.91, hence rejecting the null hypothesis of un-clusterable data.

Having assessed the tendency to cluster, we run the AGNES algorithm (Kaufman & Rousseeuw 1990) on the

four metrics. The results are graphically presented by the dendograms in Figure 6 and Figure 7. In both cases, the

weeks around the market plunge pinned at week 8 are grouped together in a neatly separated cluster. In January

2020, weeks of elevated volatility are recorded even before the COVID-19 was declared a pandemic, amid concerns

over the overvaluation of the equity markets, the China-USA trade war and the first news of the health emergency

counting the first infections in Europe and USA. Moreover, as statistical measure to validate the clusters, we use

the Dunn index (Dunn 1973, 1974), a metric used to evalute clustering algorithms calculated as the ratio between

the minimum between-cluster distance and the maximal within-cluster distance. A higher value implies a better

clustering. We normalize the Dunn Index to let it assume values between 0 and 1. Our procedures obtain a Dunn

index of 0.93 and 0.85 respectively for the GFC and the COVID-19 sub-samples. This allows us to conclude that

the metrics are able to capture a different hierarchy in response to structural changes in the covariance matrices.

Figure 6: The dendogram produced by AGNES on the 2008 dataset

Note: the dendogram shows that the AGNES algorithm is able to separate the weeks around the one when the
S&P 500 recorded the lowest value during the 2008 GFC (in red) from the others. The 2008 sub-sample is drawn
from the original dataset so that the first observation is set at 8 weeks before the lowest value touched by the S&P
500.
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Figure 7: The dendogram produced by AGNES on the 2020 dataset

Note: as for the 2008 GFC, the 2020 dendogram also shows that the AGNES algorithm is able to separate the
weeks around the one when the S&P 500 recorded the lowest value during the 2020 financial setback triggered by
the COVID-19 health crisis (in red).

5.2 Momentum investment strategy

In this section, we compare the performance of the filtered momentum investment strategy 6 with the unfiltered

version.

Table 3 reports performance metrics for both strategies.

Table 3: Performance evaluation of the two investment strategies

Filtered strategy Unfiltered strategy
Sharpe ratio 1.25 1.03
Sortino ratio 0.93 0.75
Kurtosis 3.1 4.7

The evaluation metrics show that superior performance is linked to the usage of the eigenvalue-eigenvector

based metrics for filtering the momentum investment strategy. In particular, the improvement is mostly in terms

of risk strategy. In fact, the filtering mechanism allows to quickly react to structural changes in covariance matrices

and minimum spanning trees. As ε > 1, the filtered strategy is capable to increase the speed of mean reversion

when systemic risk is detected by the sheering of the covariance matrix. As such, the filtered strategy positions

itself closer to the longer term mean, which is more likely to proxy the fair value of the underlying asset. In fact,

the unfiltered strategy incurred in large losses during the COVID-19 and 2008 Global Financial Crisis. During

calm markets, on the other hand, the filtered strategy allows to rise with the tide in the same way as the unfiltered

6We are not analyzing the momentum strategy using the classical winners minus losers as it may exhibit sasonality especially with
monthly or quarterly frequencies.
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strategy. As a result, the filtered strategy exhibiths larger Sharpe and Sortino ratios. Moreover, the conservative

shifting to quicker convergence to the mean is also mirrored in lower kurtosis.

5.3 Out-of-sample analysis

In financial applications, focusing on the out-of-sample performance allows to avoid in-sample overfitting. For

this reason, we re-run the two empirical applications on ten synthetic datasets. The VAE model specification is

fine-tuned via grid search. We use two hidden layers with 5 hidden units activated by means of the leaky RELU

function, initialized with the Glorot kernel initializer, with a Ridge regularizer of 0.02 and a Lasso regularizer of

0.01. The training is done via Stochastic Gradient Descent with a Nesterov momentum of 0.6. The loss function

is targeting the representation error via the consistency of the mean squared error.

The main idea of this section is to ensure consistency across various datasets and discard the hypotesis that

the results are sample-dependent. Table 4 reports the Dunn index and the Sharpe ratio across the ten synthetic

datasets. As it is visible, results are consistent across the simulations. In particular, the normalized Dunn index

averages 0.91, hinting that the AGNES algoritm on the four eigenvalue-eigenvector metrics results in small within-

cluster variance and well separated (low between cluster variance) clusters. The Sharpe ratio averages 1.21 above

the 0.98 of the unfiltered one.

Table 4: Evaluation of clustering and filtered momentum strategy performance across the ten out-of-sample syn-
thetic datasets

Sample Dunn index Sharpe filtered Sharpe unfiltered
S1 0.86 1.20 1.08
S2 0.94 1.22 0.95
S3 0.84 1.21 0.95
S4 0.88 1.23 1.04
S5 0.94 1.26 0.99
S6 0.98 1.16 0.98
S7 0.84 1.20 0.96
S8 0.95 1.30 0.96
S9 0.91 1.18 0.96
S10 0.88 1.19 0.97
Average 0.91 1.21 0.98

6 Conclusions and future work

The aim of this research is to offer empirical evidence on the usage of eigenvalues and eigenvectors as risk signal

able to capture exogenous changes in financial markets’ sentiment.
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Using a datasets composed of hourly observations of sentiment assets’ returns, we first calculate the realized

covariance matrices and arrange the securities in a minimum spanning tree. Successively, we split the dataset in two

sub-samples with each one being 52 weeks long and starting eight weeks before the deepest point recorded by the

S&P500 during the 2008 Global Financial Crisis and the 2020 financial setback triggered by the COVID-19 health

crisis respectively. We offer a case study on the behavior of four eigenvalue-eigenvector based metrics extracted from

the covariance matrices and the minimum spanning trees, namely the variance explained by the largest eigenvalue,

the difference of variance explained by the five largest and largest eigenvalue, the mean eigenvector centrality of

the minimum spanning tree and its standard deviation.

We analyse the distributions of the four metrics during both setbacks. The distribution of the variance explained

by the largest eigenvalue and by the difference in variance explained by the five largest and largest eigenvalue exhibit

jumps during the crisis suggesting that the systematic source of risk becomes more predominant during these

periods. In terms of the mean and standard deviation of the eigenvector centrality of the minimum spanning tree,

their distributions also exhibit higher means during weeks of crises. In this case too, the reason is related to the fact

that systematic risk explains a larger portion of asset movements and empirical correlations tend to jump higher.

The minimum spanning tree topological arrangement, moreover, allows us to conclude that during volatile markets

securities concentrate in the core of the tree wherein fewer assets are capable to explain co-movements among

several more peripherical assets. Hence, in both cases, changes in eigenvalues-eigenvectors are likely triggered by

changes in systematic risk.

To validate the choise of the metrics, we first show that an agglomerative hierarchical clustering algorithm based

on the metrics can isolate the weeks of crisis from those of calm trading weeks. Second, we show that improved

performances are linked to filtering a momentum investment strategy with the probability of being in a volatile

market returned by a linear logistic model on the metrics. Finally, we validate out-of-sample our findings on ten

synthetic datasets generated using a Variational Auto-Encoder neural network.

Future work should focus on exploring the effects of other eigenvalue-eigenvector based metrics. Moreover, we

suggest that major research should be conducted on the role of eigenvalues and eigenvectors to measure financial

risk, such as Value at Risk, portfolio construction and asset pricing.
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